logo
বার্তা পাঠান
গরম পণ্য শীর্ষ পণ্য
আরও পণ্য
আমাদের সম্পর্কে
আমাদের সম্পর্কে
KingPo Technology Development Limited
কিংপো টেকনোলজি ডেভেলপমেন্ট লিমিটেডব্যাটারি পরীক্ষার মেশিন, পরিবেশগত পরীক্ষার চেম্বার এবং নিরাপত্তা সম্মতি পরীক্ষার সরঞ্জাম তৈরির ক্ষেত্রে বিশ্বব্যাপী শীর্ষস্থানীয়।আমরা বিশ্বব্যাপী পরীক্ষাগারগুলির জন্য এক-স্টপ সমাধান সরবরাহ করিআমাদের লক্ষ্য পণ্যের গুণমান উন্নত করা, খরচ কমানো এবং আমাদের গ্রাহকদের আন্তর্জাতিক প্রতিযোগিতামূলকতা বাড়ানো।উচ্চ নির্ভুলতা পরীক্ষার সমাধান.ইন্টারন্যাশনাল ইলেক্ট্রোটেকনিক্যাল কমিশন (আইইসি) দ্বারা স্বীকৃত এবং একটি মর্যাদাপূর্ণ সিবিটিএল শংসাপত্রের অধিকারী, কিংপো শীর্ষ স্তরের ...
আরও পড়ুন
আবেদন A উদ্ধৃতি
0+
বার্ষিক বিক্রয়
0
বছর
গ্রাহক
0%
পি.সি.
0+
কর্মচারী
আমরা প্রদান করি
সেরা সার্ভিস!
আপনি বিভিন্ন উপায়ে আমাদের সাথে যোগাযোগ করতে পারেন
যোগাযোগ করুন
KingPo Technology Development Limited

গুণমান ব্যাটারি পরীক্ষার সরঞ্জাম & পরিবেশগত টেস্ট চেম্বার কারখানা

ঘটনাবলী
কোম্পানির সর্বশেষ খবর সম্পর্কে High frequency electrosurgical tester uses high frequency LCR or mesh above MHz Dynamic compensation implementation of n
High frequency electrosurgical tester uses high frequency LCR or mesh above MHz Dynamic compensation implementation of n

2025-10-24

.gtr-container-x7y2z1 { font-family: Verdana, Helvetica, "Times New Roman", Arial, sans-serif; color: #333; line-height: 1.6; padding: 16px; max-width: 100%; box-sizing: border-box; border: none; } @media (min-width: 768px) { .gtr-container-x7y2z1 { padding: 24px 40px; } } .gtr-container-x7y2z1 p { font-size: 14px; margin-bottom: 1em; text-align: left !important; } .gtr-container-x7y2z1 .gtr-title { font-size: 18px; font-weight: bold; text-align: center; margin-bottom: 1.5em; line-height: 1.4; } .gtr-container-x7y2z1 .gtr-authors { font-size: 14px; text-align: center; margin-bottom: 1em; } .gtr-container-x7y2z1 .gtr-affiliation { font-size: 14px; text-align: center; margin-bottom: 2em; } .gtr-container-x7y2z1 .gtr-abstract-heading { font-size: 14px; font-weight: bold; margin-bottom: 0.5em; text-align: left; } .gtr-container-x7y2z1 .gtr-heading-1 { font-size: 18px; font-weight: bold; margin-top: 2em; margin-bottom: 1em; line-height: 1.4; position: relative; padding-left: 1.5em; } .gtr-container-x7y2z1 .gtr-heading-1::before { content: counter(gtr-section-counter) " " !important; counter-increment: gtr-section-counter; position: absolute !important; left: 0 !important; color: #007bff; font-weight: bold; } .gtr-container-x7y2z1 .gtr-heading-2 { font-size: 16px; font-weight: bold; margin-top: 1.5em; margin-bottom: 0.8em; line-height: 1.4; position: relative; padding-left: 2em; } .gtr-container-x7y2z1 .gtr-heading-2::before { content: counter(gtr-section-counter) "." counter(gtr-subsection-counter) " " !important; counter-increment: gtr-subsection-counter; position: absolute !important; left: 0 !important; color: #007bff; font-weight: bold; } .gtr-container-x7y2z1 .gtr-heading-1, .gtr-container-x7y2z1 .gtr-heading-2 { counter-reset: gtr-subsection-counter; } .gtr-container-x7y2z1 .gtr-heading-1:not(:first-of-type) { counter-reset: gtr-subsection-counter; } .gtr-container-x7y2z1 .gtr-heading-1:first-of-type { counter-reset: gtr-section-counter; } .gtr-container-x7y2z1 .gtr-heading-1 + .gtr-heading-2 { counter-reset: gtr-subsection-counter; } .gtr-container-x7y2z1 .gtr-image-wrapper { text-align: center; margin: 1.5em 0; } .gtr-container-x7y2z1 .gtr-image-wrapper img { display: inline-block; vertical-align: middle; } .gtr-container-x7y2z1 sup { font-size: 0.75em; vertical-align: super; line-height: 0; } .gtr-container-x7y2z1 em { font-style: italic; } .gtr-container-x7y2z1 strong { font-weight: bold; } .gtr-container-x7y2z1 ul { list-style: none !important; padding-left: 1.5em; margin-bottom: 1em; } .gtr-container-x7y2z1 ul li { list-style: none !important; position: relative; margin-bottom: 0.5em; padding-left: 1.5em; } .gtr-container-x7y2z1 ul li::before { content: "•" !important; position: absolute !important; left: 0 !important; color: #007bff; font-size: 1.2em; line-height: 1; } .gtr-container-x7y2z1 ol { list-style: none !important; padding-left: 2em; margin-bottom: 1em; counter-reset: gtr-ol-counter; } .gtr-container-x7y2z1 ol li { list-style: none !important; position: relative; margin-bottom: 0.5em; padding-left: 2em; counter-increment: gtr-ol-counter; } .gtr-container-x7y2z1 ol li::before { content: counter(gtr-ol-counter) "." !important; position: absolute !important; left: 0 !important; color: #007bff; font-weight: bold; text-align: right; width: 1.5em; } .gtr-container-x7y2z1 .gtr-table-wrapper { overflow-x: auto; margin: 1.5em 0; } .gtr-container-x7y2z1 table { width: 100%; border-collapse: collapse !important; border-spacing: 0 !important; margin: 0 auto; font-size: 14px; line-height: 1.4; } .gtr-container-x7y2z1 table th, .gtr-container-x7y2z1 table td { border: 1px solid #ccc !important; padding: 8px 12px; text-align: left; vertical-align: top; } .gtr-container-x7y2z1 table th { font-weight: bold; background-color: #f0f0f0; text-align: center; } .gtr-container-x7y2z1 table tr:nth-child(even) { background-color: #f9f9f9; } .gtr-container-x7y2z1 a { color: #007bff; text-decoration: none; } .gtr-container-x7y2z1 a:hover { text-decoration: underline; } .gtr-container-x7y2z1 .gtr-references ol { counter-reset: gtr-ref-counter; } .gtr-container-x7y2z1 .gtr-references ol li { counter-increment: gtr-ref-counter; padding-left: 2.5em; list-style: none !important; } .gtr-container-x7y2z1 .gtr-references ol li::before { content: "[" counter(gtr-ref-counter) "]" !important; width: 2em; } .gtr-container-x7y2z1 .gtr-author-info { margin-top: 2em; padding-top: 1em; border-top: 1px solid #eee; } .gtr-container-x7y2z1 .gtr-author-info p { margin-bottom: 0.5em; } .gtr-container-x7y2z1 .gtr-author-info strong { display: block; margin-bottom: 0.5em; } @media (max-width: 767px) { .gtr-container-x7y2z1 table { width: auto !important; min-width: 100%; } } Dynamic Compensation Implementation for High-Frequency Electrosurgical Unit Testing Using High-Frequency LCR or Network Analyzers Above MHz Shan Chao1, Qiang Xiaolong2, Zhang Chao3, Liu Jiming3. (1. Heilongjiang Institute for Drug Control, Harbin 150088, China; 2. Guangxi Zhuang Autonomous Region Medical Device Testing Center, Nanning 530021, China; 3. Kingpo Technology Development Limited Dongguan 523869; China) Abstract: When high-frequency electrosurgical units (ESUs) operate above 1 MHz, the parasitic capacitance and inductance of resistive components result in complex high-frequency characteristics, impacting testing accuracy. This paper proposes a dynamic compensation method based on high-frequency LCR meters or network analyzers for high-frequency electrosurgical unit testers. By employing real-time impedance measurement, dynamic modeling, and adaptive compensation algorithms, the method addresses measurement errors caused by parasitic effects. The system integrates high-precision instruments and real-time processing modules to achieve accurate characterization of ESU performance. Experimental results demonstrate that, within the 1 MHz to 5 MHz range, impedance error is reduced from 14.8% to 1.8%, and phase error is reduced from 9.8 degrees to 0.8 degrees, validating the method's effectiveness and robustness. Extended studies explore algorithm optimization, adaptation for low-cost instruments, and applications across a broader frequency range. introduction The electrosurgical unit (ESU) is an indispensable device in modern surgery, using high-frequency electrical energy to achieve tissue cutting, coagulation, and ablation. Its operating frequency typically ranges from 1 MHz to 5 MHz to reduce neuromuscular stimulation and improve energy transfer efficiency. However, at high frequencies, parasitic effects of resistive components (such as capacitance and inductance) significantly affect impedance characteristics, making traditional testing methods incapable of accurately characterizing ESU performance. These parasitic effects not only affect output power stability but can also lead to uncertainty in energy delivery during surgery, increasing clinical risk. Traditional ESU testing methods are typically based on static calibration, using fixed loads for measurement. However, in high-frequency environments, parasitic capacitance and inductance vary with frequency, leading to dynamic changes in impedance. Static calibration cannot adapt to these changes, and measurement errors can be as high as 15%[2]. To address this issue, this paper proposes a dynamic compensation method based on a high-frequency LCR meter or network analyzer. This method compensates for parasitic effects through real-time measurement and an adaptive algorithm to ensure test accuracy. The contributions of this paper include: A dynamic compensation framework based on a high-frequency LCR meter or network analyzer is proposed. A real-time impedance modeling and compensation algorithm was developed for frequencies above 1 MHz. The effectiveness of the method was verified through experiments, and its application potential on low-cost instruments was explored. The following sections will introduce the theoretical basis, method implementation, experimental verification and future research directions in detail. Theoretical analysis High frequency resistance characteristics In high-frequency environments, the ideal model of resistor components no longer applies. Actual resistors can be modeled as a composite circuit consisting of parasitic capacitance (Cp) and parasitic inductance (Lp), with an equivalent impedance of: Where Z is the complex impedance, R is the nominal resistance, ω is the angular frequency, and j is the imaginary unit. The parasitic inductance Lp and parasitic capacitance Cp are determined by the component material, geometry, and connection method, respectively. Above 1 MHz, ω Lp and The contribution of is significant, resulting in nonlinear changes in impedance magnitude and phase. For example, for a nominal 500 Ω resistor at 5 MHz, assuming Lp = 10 nH and Cp = 5 pF, the imaginary part of the impedance is: Substituting the numerical value, ω = 2π × 5 × 106rad/s, we can obtain: This imaginary part indicates that parasitic effects significantly affect the impedance, causing measurement deviations. Dynamic compensation principle The goal of dynamic compensation is to extract parasitic parameters through real-time measurement and deduct their effects from the measured impedance. LCR meters calculate impedance by applying an AC signal of known frequency and measuring the amplitude and phase of the response signal. Network analyzers analyze reflection or transmission characteristics using S-parameters (scattering parameters), providing more accurate impedance data. Dynamic compensation algorithms use this measurement data to construct a real-time impedance model and correct for parasitic effects. The impedance after compensation is: This method requires high-precision data acquisition and fast algorithm processing to adapt to the dynamic working conditions of the ESU. Combining Kalman filtering technology can further improve the robustness of parameter estimation and adapt to noise and load changes [3]. method System Architecture The system design integrates the following core components: High-frequency LCR meter or network analyzer: such as the Keysight E4980A (LCR meter, 0.05% accuracy) or the Keysight E5061B (network analyzer, supports S-parameter measurements) for high-precision impedance measurements. Signal acquisition unit: collects impedance data in the range of 1 MHz to 5 MHz, with a sampling rate of 100 Hz. Processing unit: uses an STM32F4 microcontroller (running at 168 MHz) to run the real-time compensation algorithm. Compensation module: Adjusts the measured value based on the dynamic model and contains a digital signal processor (DSP) and dedicated firmware. The system communicates with the LCR meter/network analyzer via USB or GPIB interfaces, ensuring reliable data transmission and low latency. The hardware design incorporates shielding and grounding for high-frequency signals to reduce external interference. To enhance system stability, a temperature compensation module has been added to correct for the effects of ambient temperature on the measuring instrument. Motion compensation algorithm The motion compensation algorithm is divided into the following steps: Initial calibration: Measure the impedance of a reference load (500 Ω) at known frequencies (1 MHz, 2 MHz, 3 MHz, 4 MHz, and 5 MHz) to establish a baseline model. Parasitic parameter extraction: The measured data is fitted using the least squares method to extract R, Lp, and Cp. The fitting model is based on: Real-time compensation: Calculate the corrected impedance based on the extracted parasitic parameters: Where ^(x)k is the estimated state (R, Lp, Cp), Kk is the Kalman gain, zk is the measurement value, and H is the measurement matrix. To improve algorithm efficiency, a fast Fourier transform (FFT) is used to preprocess the measurement data and reduce computational complexity. Furthermore, the algorithm supports multi-threaded processing to perform data acquisition and compensation calculations in parallel. Implementation details The algorithm was prototyped in Python and then optimized and ported to C to run on an STM32F4. The LCR meter provides a 100 Hz sampling rate via the GPIB interface, while the network analyzer supports higher frequency resolution (up to 10 MHz). The compensation module's processing latency is kept to under 8.5 ms, ensuring real-time performance. Firmware optimizations include: Efficient floating point unit (FPU) utilization. Memory-optimized data buffer management, supporting 512 KB cache. Real-time interrupt processing ensures data synchronization and low latency. To accommodate different ESU models, the system supports multi-frequency scanning and automatic parameter adjustment based on a pre-set database of load characteristics. Furthermore, a fault detection mechanism has been added. When measurement data is abnormal (such as parasitic parameters outside the expected range), the system will trigger an alarm and recalibrate. Experimental verification Experimental setup The experiments were conducted in a laboratory environment using the following equipment: High-frequency ESU: operating frequency 1 MHz to 5 MHz, output power 100 W. LCR table: Keysight E4980A, accuracy 0.05%. Network analyzer: Keysight E5061B, supports S-parameter measurements. Reference load: 500 Ω ± 0.1% precision resistor, rated power 200 W. Microcontroller: STM32F4, running at 168 MHz. The experimental load consisted of ceramic and metal film resistors to simulate the diverse load conditions encountered during actual surgery. Test frequencies were 1 MHz, 2 MHz, 3 MHz, 4 MHz, and 5 MHz. The ambient temperature was controlled at 25°C ± 2°C, and the humidity was 50% ± 10% to minimize external interference. Experimental results Uncompensated measurements show that the impact of parasitic effects increases significantly with frequency. At 5 MHz, the impedance deviation reaches 14.8%, and the phase error is 9.8 degrees. After applying dynamic compensation, the impedance deviation is reduced to 1.8%, and the phase error is reduced to 0.8 degrees. Detailed results are shown in Table 1. The experiment also tested the algorithm's stability under non-ideal loads (including high parasitic capacitance, Cp = 10pF). After compensation, the error was kept within 2.4%. Furthermore, repeated experiments (averaging 10 measurements) verified the system's repeatability, with a standard deviation of less than 0.1%. Table 1: Measurement accuracy before and after compensation frequency ( MHz ) Uncompensated impedance error (%) Impedance error after compensation (%) Phase error ( Spend ) 1 4.9 0.7 0.4 2 7.5 0.9 0.5 3 9.8 1.2 0.6 4 12.2 1.5 0.7 5 14.8 1.8 0.8 Performance Analysis The compensation algorithm has a computational complexity of O(n), where n is the number of measurement frequencies. Kalman filtering significantly improves the stability of parameter estimation, especially in noisy environments (SNR = 20 dB). The overall system response time is 8.5 ms, meeting real-time testing requirements. Compared to traditional static calibration, the dynamic compensation method reduces measurement time by approximately 30%, improving test efficiency. discuss Method advantages The dynamic compensation method significantly improves the accuracy of high-frequency electrosurgical testing by processing parasitic effects in real time. Compared with traditional static calibration, this method can adapt to dynamic changes in the load and is particularly suitable for complex impedance characteristics in high-frequency environments. The combination of LCR meters and network analyzers provides complementary measurement capabilities: LCR meters are suitable for fast impedance measurements, and network analyzers perform well in high-frequency S-parameter analysis. In addition, the application of Kalman filtering improves the algorithm's robustness to noise and load changes [4]. limitation Although the method is effective, it has the following limitations: Instrument cost: High-precision LCR meters and network analyzers are expensive, which limits the popularity of this method. Calibration needs: The system needs to be calibrated regularly to adapt to instrument aging and environmental changes. Frequency range: The current experiment is limited to below 5 MHz, and the applicability of higher frequencies (such as 10 MHz) needs to be verified. Optimization direction Future improvements can be made in the following ways: Low-cost instrument adaptation: Develop a simplified algorithm based on a low-cost LCR meter to reduce system cost. Wideband support: The algorithm is extended to support frequencies above 10 MHz to meet the needs of new ESUs. Artificial intelligence integration: Introducing machine learning models (such as neural networks) to optimize parasitic parameter estimation and improve the level of automation. in conclusion This paper proposes a dynamic compensation method based on a high-frequency LCR meter or network analyzer for accurate measurements above 1 MHz for high-frequency electrosurgical testers. Through real-time impedance modeling and an adaptive compensation algorithm, the system effectively mitigates measurement errors caused by parasitic capacitance and inductance. Experimental results demonstrate that within the 1 MHz to 5 MHz range, the impedance error is reduced from 14.8% to 1.8%, and the phase error is reduced from 9.8 degrees to 0.8 degrees, validating the effectiveness and robustness of the method. Future research will focus on algorithm optimization, low-cost instrument adaptation, and application over a wider frequency range. Integration of artificial intelligence technologies (such as machine learning models) can further improve parameter estimation accuracy and system automation. This method provides a reliable solution for high-frequency electrosurgical unit testing and has important clinical and industrial applications. References GB9706.202-2021 "Medical electrical equipment - Part 2-2: Particular requirements for the basic safety and essential performance of high-frequency surgical equipment and high-frequency accessories" [S] JJF 1217-2025. High-Frequency Electrosurgical Unit Calibration Specification [S] Chen Guangfei. Research and design of high-frequency electrosurgical analyzer[J]. Beijing Biomedical Engineering, 2009, 28(4): 342-345. Huang Hua, Liu Yajun. Brief analysis of the power measurement and acquisition circuit design of QA-Es high-frequency electrosurgical analyzer[J]. China Medical Equipment, 2013, 28(01): 113-115. Chen Shangwen, Performance testing and quality control of medical high-frequency electrosurgical unit[J]. Measuring and Testing Technology, 2018, 45(08): 67~69. Chen Guangfei, Zhou Dan. Research on calibration method of high-frequency electrosurgical analyzer[J]. Medical and Health Equipment, 2009, 30(08): 9~10+19. Duan Qiaofeng, Gao Shan, Zhang Xuehao. Discussion on high-frequency leakage current of high-frequency surgical equipment. J. China Medical Device Information, 2013, 19(10): 159-167. Zhao Yuxiang, Liu Jixiang, Lu Jia, et al., Practice and discussion of high-frequency electrosurgical unit quality control testing methods. China Medical Equipment, 2012, 27(11): 1561-1562. He Min, Zeng Qiao, Liu Hanwei, Wu Jingbiao (corresponding author). Analysis and comparison of high-frequency electrosurgical unit output power test methods [J]. Medical Equipment, 2021, (34): 13-0043-03. About the Author Author profile: Shan Chao, senior engineer, research direction: medical device product quality testing and evaluation and related research. Author profile: Qiang Xiaolong, deputy chief technician, research direction: active medical device testing quality evaluation and standardization research. Author profile: Liu Jiming, undergraduate, research direction: measurement and control design and development. Corresponding author Zhang Chao, Master, focuses on measurement and control design and development. Email: info@kingpo.hk
আরো দেখুন
কোম্পানির সর্বশেষ খবর সম্পর্কে ব্যাটারি পরীক্ষার মেশিনের সাথে দক্ষতা অপ্টিমাইজ করুন
ব্যাটারি পরীক্ষার মেশিনের সাথে দক্ষতা অপ্টিমাইজ করুন

2025-10-14

ব্যাটারি টেস্টিং মেশিনের সাহায্যে দক্ষতা বাড়ান ব্যাটারি পরীক্ষার মেশিনগুলি আজকের প্রযুক্তি-চালিত বিশ্বে অত্যাবশ্যক সরঞ্জাম। তারা নিশ্চিত করে যে ব্যাটারি তাদের সর্বোত্তম পারফরম্যান্স করে। এই মেশিনগুলি বড় সমস্যা হওয়ার আগে সম্ভাব্য সমস্যাগুলি সনাক্ত করতে সহায়তা করে। এটি সময় এবং অর্থ সাশ্রয় করতে পারে। সাধারণ হ্যান্ডহেল্ড ডিভাইস থেকে শুরু করে উন্নত বেঞ্চ-টপ মডেল পর্যন্ত, ব্যাটারি পরীক্ষক বিভিন্ন রূপে আসে। প্রত্যেকটি একটি অনন্য উদ্দেশ্যে কাজ করে। অটোমোবাইল এবং ইলেকট্রনিক্সের মতো শিল্পগুলি এই মেশিনগুলির উপর নির্ভর করে। তারা ব্যাটারি চালিত সরঞ্জামগুলির দক্ষতা এবং সুরক্ষা বজায় রাখতে সহায়তা করে। ব্যাটারি পরীক্ষার মেশিন কিভাবে বেছে নেবেন এবং ব্যবহার করবেন তা বোঝা খুবই গুরুত্বপূর্ণ। এটি ব্যাটারির আয়ু বাড়াতে এবং কর্মক্ষমতা বাড়াতে পারে। ব্যাটারি টেস্টিং মেশিন কি? একটি ব্যাটারি পরীক্ষার মেশিন ব্যাটারির স্বাস্থ্য এবং কর্মক্ষমতা মূল্যায়ন করে। এটি একটি ব্যাটারির কার্যকারিতা সম্পর্কে গুরুত্বপূর্ণ অন্তর্দৃষ্টি প্রদান করে। এই ডিভাইসগুলি গুরুত্বপূর্ণ মেট্রিকগুলি পরিমাপ করতে পারে। উদাহরণস্বরূপ, চার্জের অবস্থা (এসওসি) এবং স্বাস্থ্যের অবস্থা (এসওএইচ) । এই ধরনের মেট্রিকগুলি ব্যাটারির বর্তমান অবস্থা এবং অবশিষ্ট জীবনকাল নির্ধারণে সহায়তা করে। বিভিন্ন ধরণের ব্যাটারি টেস্টিং মেশিন রয়েছে, প্রতিটি নির্দিষ্ট ফাংশনের জন্য ডিজাইন করা হয়েছে। এখানে সাধারণ বৈশিষ্ট্যগুলি রয়েছেঃ স্পষ্ট পাঠের জন্য ডিজিটাল ডিসপ্লে। লিড-এসিড এবং লিথিয়াম-আয়ন এর মতো বিভিন্ন ব্যাটারি রসায়নের সাথে সামঞ্জস্য। লোড, ক্যাপাসিটি এবং ইম্পেড্যান্স টেস্ট করার ক্ষমতা। এই মেশিনগুলি বিশ্বব্যাপী শিল্প এবং কর্মশালাগুলিতে অত্যাবশ্যক সরঞ্জাম। কেন ব্যাটারি পরীক্ষা গুরুত্বপূর্ণ ব্যাটারি পরীক্ষা সরঞ্জাম দক্ষতা বজায় রাখতে একটি গুরুত্বপূর্ণ ভূমিকা পালন করে। এটি সম্ভাব্য ব্যাটারি সমস্যা সম্পর্কে প্রাথমিক সতর্কতা প্রদান করে অপ্রত্যাশিত ব্যর্থতা প্রতিরোধ করে।এই সক্রিয় পদ্ধতি ব্যয়বহুল ডাউনটাইম এড়াতে সাহায্য করে. নিয়মিত ব্যাটারি পরীক্ষা ব্যাটারির আয়ু উল্লেখযোগ্যভাবে বাড়িয়ে তুলতে পারে। সমস্যাগুলি প্রাথমিকভাবে সনাক্ত করে ব্যবহারকারীরা সময়মত রক্ষণাবেক্ষণ করতে পারেন।এটি কেবল কর্মক্ষমতা উন্নত করে না বরং দীর্ঘমেয়াদে অর্থ সাশ্রয় করে. ব্যাটারি টেস্টিং কেন গুরুত্বপূর্ণঃ সর্বোত্তম সরঞ্জাম কর্মক্ষমতা নিশ্চিত করে। এটি হঠাৎ ব্যাটারি ব্যর্থতার ঝুঁকি হ্রাস করে। ব্যাটারির সেবা জীবন বাড়ায়। অটোমোবাইল এবং ইলেকট্রনিক্সের মতো ব্যাটারির উপর নির্ভরশীল শিল্পগুলি ধারাবাহিক পরীক্ষার অনুশীলন থেকে ব্যাপকভাবে উপকৃত হয়। ব্যাটারি টেস্টিং মেশিনের প্রকার ব্যাটারি টেস্টিং মেশিনগুলি বিভিন্ন চাহিদা পূরণের জন্য বিভিন্ন আকারে আসে। সাধারণ ডিভাইস থেকে শুরু করে উন্নত সিস্টেম পর্যন্ত, প্রতিটি একটি নির্দিষ্ট উদ্দেশ্যে পরিবেশন করে।এই ধরনের বিষয়গুলো বুঝতে পারলে সঠিক একটি বেছে নিতে হবে. হ্যান্ডহেল্ড ব্যাটারি পরীক্ষকগুলি বহনযোগ্য এবং ব্যবহারকারী-বান্ধব। তারা ক্ষেত্রের কাজে দ্রুত চেক করার জন্য আদর্শ। তাদের সরলতা সত্ত্বেও, তারা ব্যাটারির স্বাস্থ্য সম্পর্কে দরকারী অন্তর্দৃষ্টি প্রদান করে। বেঞ্চ-টপ পরীক্ষক আরও উন্নত পরীক্ষার ক্ষমতা সরবরাহ করে। তারা বিভিন্ন পরীক্ষা সম্পাদন করতে পারে, যেমন লোড, ক্ষমতা এবং প্রতিবন্ধকতা পরীক্ষা।এই মেশিনগুলি বিস্তারিত ডায়াগনস্টিক এবং গবেষণা অ্যাপ্লিকেশনের জন্য উপযুক্ত. কিছু বিশেষ পরীক্ষক নির্দিষ্ট ব্যাটারি রসায়নের জন্য ডিজাইন করা হয়েছে। উদাহরণস্বরূপ, কিছু সীসা-অ্যাসিড ব্যাটারির জন্য অনুকূলিত করা হয়, অন্যরা লিথিয়াম-আয়ন ধরণের উপর ফোকাস করে।আপনার ব্যাটারি রসায়ন জন্য উপযুক্ত একটি পরীক্ষক নির্বাচন অপরিহার্য. ব্যাটারি পরীক্ষকগুলির প্রধান প্রকারগুলির মধ্যে রয়েছেঃ হ্যান্ডহেল্ড পরীক্ষক বেঞ্চ-টপ মেশিন রসায়ন-নির্দিষ্ট পরীক্ষক আমিরালি নাসিরি (https://unsplash.com/@amiralinasiri) একটি ব্যাটারি পরীক্ষক মধ্যে খুঁজতে মূল বৈশিষ্ট্য একটি ব্যাটারি পরীক্ষক নির্বাচন করার সময়, কয়েকটি মূল বৈশিষ্ট্যগুলিতে ফোকাস করুন। এই বৈশিষ্ট্যগুলি নিশ্চিত করে যে পরীক্ষক আপনার নির্দিষ্ট চাহিদা পূরণ করে এবং সঠিক ফলাফল প্রদান করে। ব্যাটারি পরীক্ষককে ব্যাটারির স্বাস্থ্যের একটি সত্য চিত্র পেতে নিশ্চিত করতে সঠিক পাঠ্য দিতে হবে। বিভিন্ন ব্যাটারি ধরণের সাথে সামঞ্জস্যতা এর ব্যবহারযোগ্যতা বাড়ায়। ব্যবহারের সহজতা আরেকটি গুরুত্বপূর্ণ বৈশিষ্ট্য। একটি ব্যবহারকারী বান্ধব ইন্টারফেস পরীক্ষার প্রক্রিয়াটিকে সহজ করে তোলে, এটি প্রত্যেকের জন্য অ্যাক্সেসযোগ্য করে তোলে। পেশাদারদের জন্য, উন্নত বৈশিষ্ট্যগুলি প্রয়োজনীয় হতে পারে। ডেটা লগিং ক্ষমতা সহ পরীক্ষক বিবেচনা করুন। এই বৈশিষ্ট্যটি সময়ের সাথে পারফরম্যান্স ট্র্যাকিংয়ের অনুমতি দেয়, যা প্রতিরোধমূলক রক্ষণাবেক্ষণের জন্য গুরুত্বপূর্ণ।এটি প্রবণতা এবং সম্ভাব্য সমস্যাগুলিকে প্রাথমিকভাবে সনাক্ত করতে সহায়তা করে. বিবেচনা করার জন্য মূল বৈশিষ্ট্যঃ সঠিকতা ব্যাটারি সামঞ্জস্য ব্যবহার সহজ ডেটা লগিং ক্ষমতা ব্রেট জর্ডান (https://unsplash.com/@brett_jordan) কিভাবে ব্যাটারি টেস্টিং মেশিন কাজ করে ব্যাটারি পরীক্ষার মেশিনগুলি ব্যাটারির স্বাস্থ্য এবং কর্মক্ষমতা মূল্যায়ন করে। তারা ভোল্টেজ, বর্তমান এবং প্রতিরোধের মতো পরামিতিগুলি মূল্যায়ন করে। পরীক্ষার প্রক্রিয়াটি প্রায়শই পরীক্ষককে ব্যাটারির সাথে সংযুক্ত করে শুরু হয়। মেশিনটি তারপরে লোড পরীক্ষা বা প্রতিরোধের পরিমাপের মতো মূল্যায়ন সম্পাদন করে।এই পরীক্ষা ব্যাটারি চার্জ অবস্থা এবং স্বাস্থ্য নির্ধারণ. বিভিন্ন পরীক্ষার পদ্ধতি ব্যাটারির পারফরম্যান্সের বিভিন্ন দিক সম্পর্কে অন্তর্দৃষ্টি প্রদান করে। উদাহরণস্বরূপ, লোড টেস্টগুলি একটি ব্যাটারি লোডের অধীনে ভোল্টেজ বজায় রাখতে পারে তা পরিমাপ করে।ব্যাটারির অভ্যন্তরীণ প্রতিরোধের বিষয়ে প্রতিবন্ধকতা পরীক্ষা বিস্তারিত দেয়এর সক্ষমতা তুলে ধরে। মূল পরীক্ষার পদ্ধতিগুলির মধ্যে রয়েছেঃ ভোল্টেজ পরিমাপ লোড পরীক্ষা প্রতিবন্ধকতা পরীক্ষা Kumpan Electric (https://unsplash.com/@kumpan_electric) দ্বারা অ্যাপ্লিকেশনঃ কে ব্যাটারি টেস্টিং মেশিন ব্যবহার করে? ব্যাটারি পরীক্ষার মেশিনগুলি তাদের ক্রিয়াকলাপের জন্য প্রয়োজনীয় বিভিন্ন শিল্পকে পরিবেশন করে। তারা ভোক্তা ইলেকট্রনিক্স এবং শিল্প উভয় ক্ষেত্রেই গুরুত্বপূর্ণ সরঞ্জাম। উদাহরণস্বরূপ, অটোমোবাইল শিল্প ব্যাটারি পরীক্ষকদের উপর ব্যাপকভাবে নির্ভর করে। তারা অপ্রত্যাশিত ব্যর্থতা প্রতিরোধের জন্য গাড়ির ব্যাটারি মূল্যায়ন করতে ব্যবহৃত হয়। একইভাবে,ইলেকট্রনিক্স নির্মাতারা এই মেশিনগুলি গুণমান নিয়ন্ত্রণের জন্য এবং দীর্ঘস্থায়ী পণ্যগুলি নিশ্চিত করার জন্য ব্যবহার করে. বিভিন্ন পেশাদার ব্যাটারি পরীক্ষার ডিভাইসগুলি থেকে উপকৃত হন, যার মধ্যে রয়েছেঃ অটোমোটিভ টেকনিশিয়ান ইলেকট্রনিক্স ইঞ্জিনিয়ার শিল্প রক্ষণাবেক্ষণ কর্মী ফিল্ড সার্ভিস টেকনিশিয়ান অতিরিক্তভাবে, হবিস্টরা ব্যক্তিগত ডিভাইসগুলির রক্ষণাবেক্ষণের জন্য এই সরঞ্জামগুলি দরকারী বলে মনে করে। ব্যাটারি পরীক্ষকরা হবিস্টদের তাদের গ্যাজেটগুলি সর্বোত্তমভাবে কাজ করে তা নিশ্চিত করতে সহায়তা করে। রবিন গ্লাসার (https://unsplash.com/@nahakiole) কিভাবে সঠিক ব্যাটারি টেস্টিং মেশিন নির্বাচন করবেন ব্যাটারি পরীক্ষার জন্য নিখুঁত মেশিন বেছে নেওয়ার জন্য সাবধানে বিবেচনা করা প্রয়োজন। আপনার পছন্দটি আপনার নির্দিষ্ট চাহিদা এবং ব্যাটারি ধরণের উপর নির্ভর করবে যা আপনি প্রায়শই সম্মুখীন হন। প্রথমত, আপনি নিয়মিত যে ব্যাটারি ব্যবহার করেন তার পরিসীমা মূল্যায়ন করুন। লিড-এসিড, লিথিয়াম-আয়ন এবং নিকেল-ধাতব হাইড্রাইডের মতো বিভিন্ন রাসায়নিকের সাথে সামঞ্জস্যপূর্ণ মেশিনগুলি বিবেচনা করুন। পরবর্তী, আপনার ক্রিয়াকলাপের জন্য প্রয়োজনীয় মূল বৈশিষ্ট্যগুলি সম্পর্কে চিন্তা করুন। অগ্রাধিকার দিকগুলি যেমনঃ রিডিংয়ের নির্ভুলতা ব্যবহারের সহজতা এবং ব্যবহারকারী ইন্টারফেস বিভিন্ন ধরণের ব্যাটারির সাথে সামঞ্জস্য বহনযোগ্যতা এবং নকশা উপরন্তু, গুণমানের সাথে আপস না করে বাজেটটি বৈশিষ্ট্যগুলির সাথে সামঞ্জস্যপূর্ণ হওয়া উচিত। একটি নির্ভরযোগ্য পরীক্ষক বিনিয়োগ ব্যয়বহুল ব্যর্থতা প্রতিরোধ করতে পারে এবং ব্যাটারি জীবন বাড়িয়ে তুলতে পারে। দাই (https://unsplash.com/@nicetomeetyou) ব্যাটারি পরীক্ষা সেরা অনুশীলন এবং নিরাপত্তা টিপস সেরা অনুশীলনগুলি বাস্তবায়ন করে ব্যাটারি পরীক্ষার সময় সঠিক ফলাফল এবং সুরক্ষা নিশ্চিত করা হয়। এর কার্যকারিতা এবং সীমাবদ্ধতা বোঝার জন্য প্রতিটি ব্যাটারি পরীক্ষকের জন্য ম্যানুয়ালটি পড়া শুরু করুন। দুর্ঘটনা এড়াতে এই নিরাপত্তা টিপস অনুসরণ করুন: সর্বদা গ্লাভস এবং গগলের মতো সুরক্ষা সরঞ্জাম পরুন। পরীক্ষার এলাকাটি ভালভাবে বাতাসে পরিবেষ্টন করা উচিত। ক্ষতিগ্রস্ত পরীক্ষক বা সংযোগ তার ব্যবহার এড়িয়ে চলুন। আপনার পরীক্ষার সরঞ্জামগুলির নিয়মিত রক্ষণাবেক্ষণ অত্যন্ত গুরুত্বপূর্ণ। এই অনুশীলনটি ডিভাইসের জীবনকাল বাড়ায় এবং পরীক্ষার নির্ভুলতা বজায় রাখে। অপারেটরদের জন্য উপযুক্ত প্রশিক্ষণও অপরিহার্য।পরীক্ষা নিরাপদ ও কার্যকরভাবে পরিচালিত হয় তা নিশ্চিত করা. উপসংহারঃ নির্ভরযোগ্য ব্যাটারি পরীক্ষার মূল্য ব্যাটারি পরীক্ষার মেশিনগুলি বিভিন্ন শিল্পে অপরিহার্য সরঞ্জাম। তারা ব্যাটারি চালিত সিস্টেমগুলির নির্ভরযোগ্য কর্মক্ষমতা এবং সুরক্ষা নিশ্চিত করে।নিয়মিত পরীক্ষা করা সম্ভাব্য ত্রুটিগুলিকে ব্যয়বহুল সমস্যায় পরিণত হওয়ার আগে সনাক্ত করতে সহায়তা করে. একটি উচ্চ মানের ব্যাটারি পরীক্ষক বিনিয়োগ সময়ের সাথে সাথে অর্থ সঞ্চয় করতে পারেন। এটি ব্যাটারি জীবন দীর্ঘায়িত এবং কর্মক্ষমতা উন্নত, ঘন ঘন প্রতিস্থাপন প্রয়োজন হ্রাস।একটি ব্যাটারি পরীক্ষক শুধু একটি সরঞ্জাম নয়ব্যাটারি ব্যবহারকে অনুকূল করতে এবং অপারেশনাল ঝুঁকি কমাতে নিয়মিত ব্যাটারি পরীক্ষা গ্রহণ করুন।
আরো দেখুন
কোম্পানির সর্বশেষ খবর সম্পর্কে থার্ম্যাজ টেস্টিংয়ে KP2021 হাই ফ্রিকোয়েন্সি ইলেক্ট্রোসার্জিক্যাল অ্যানালাইজার এবং নেটওয়ার্ক অ্যানালাইজারের প্রয়োগ
থার্ম্যাজ টেস্টিংয়ে KP2021 হাই ফ্রিকোয়েন্সি ইলেক্ট্রোসার্জিক্যাল অ্যানালাইজার এবং নেটওয়ার্ক অ্যানালাইজারের প্রয়োগ

2025-09-08

.gtr-container-f8g9h0 { font-family: Verdana, Helvetica, "Times New Roman", Arial, sans-serif; font-size: 14px; line-height: 1.6; color: #333; max-width: 100%; padding: 15px; box-sizing: border-box; } .gtr-container-f8g9h0 .gtr-heading-main { font-size: 18px; font-weight: bold; margin-top: 25px; margin-bottom: 15px; color: #222; } .gtr-container-f8g9h0 .gtr-heading-sub { font-size: 16px; font-weight: bold; margin-top: 20px; margin-bottom: 10px; color: #333; } .gtr-container-f8g9h0 .gtr-heading-minor { font-size: 15px; font-weight: bold; margin-top: 15px; margin-bottom: 8px; color: #444; } .gtr-container-f8g9h0 p { margin-bottom: 1em; text-align: left !important; color: #333; } .gtr-container-f8g9h0 strong { font-weight: bold; color: #0056b3; } .gtr-container-f8g9h0 ul { margin: 1em 0; padding: 0; list-style: none !important; } .gtr-container-f8g9h0 ul li { position: relative; padding-left: 25px; margin-bottom: 0.5em; line-height: 1.6; color: #333; } .gtr-container-f8g9h0 ul li::before { content: "•"; position: absolute; left: 0; color: #0056b3; font-weight: bold; font-size: 1.2em; line-height: 1.6; top: 0; } .gtr-container-f8g9h0 ol { margin: 1em 0; padding: 0; list-style: none !important; counter-reset: list-item; } .gtr-container-f8g9h0 ol li { position: relative; padding-left: 30px; margin-bottom: 0.5em; line-height: 1.6; color: #333; } .gtr-container-f8g9h0 ol li::before { content: counter(list-item) "."; counter-increment: none; position: absolute; left: 0; color: #0056b3; font-weight: bold; text-align: right; width: 25px; line-height: 1.6; top: 0; } @media (min-width: 768px) { .gtr-container-f8g9h0 { max-width: 960px; margin: 0 auto; padding: 30px; } .gtr-container-f8g9h0 .gtr-heading-main { margin-top: 35px; margin-bottom: 20px; } .gtr-container-f8g9h0 .gtr-heading-sub { margin-top: 25px; margin-bottom: 12px; } .gtr-container-f8g9h0 .gtr-heading-minor { margin-top: 20px; margin-bottom: 10px; } } সংক্ষিপ্তসার থার্ম্যাজ, একটি অ-আক্রমণাত্মক রেডিও ফ্রিকোয়েন্সি (আরএফ) ত্বক শক্ত করার প্রযুক্তি, চিকিৎসা সৌন্দর্যবিদ্যা ব্যাপকভাবে ব্যবহৃত হয়।পরীক্ষার মুখোমুখি চ্যালেঞ্জ যেমন ত্বকের প্রভাবGB 9706.202-2021 মানের উপর ভিত্তি করে,এই নিবন্ধটি পাওয়ার পরিমাপে KP2021 উচ্চ-ফ্রিকোয়েন্সি ইলেক্ট্রোসার্জিক্যাল অ্যানালাইজার এবং ভেক্টর নেটওয়ার্ক অ্যানালাইজার (ভিএনএ) এর সমন্বিত অ্যাপ্লিকেশনটি অনুসন্ধান করেঅপ্টিমাইজড কৌশলগুলির মাধ্যমে, এই সরঞ্জামগুলি থার্মেজ ডিভাইসগুলির নিরাপত্তা এবং কার্যকারিতা নিশ্চিত করে। কীওয়ার্ড: থার্ম্যাজ; KP2021 উচ্চ-ফ্রিকোয়েন্সি ইলেক্ট্রোসার্জিকাল বিশ্লেষক; নেটওয়ার্ক বিশ্লেষক; উচ্চ-ফ্রিকোয়েন্সি পরীক্ষা; আইইসি 60601-2-20 মান; ত্বকের প্রভাব; পরজীবী পরামিতি পরিচিতি থার্মেজ একটি অ-আক্রমণাত্মক আরএফ ত্বক টানার প্রযুক্তি যা পুনর্জন্মকে উৎসাহিত করার জন্য গভীর কোলাজেন স্তর গরম করে, ত্বকের টান এবং অ্যান্টি-এজিং প্রভাব অর্জন করে।স্থিতিশীলতাআইইসি 60601-2-2 এবং এর চীনা সমতুল্য, GB 9706.202-2021 অনুসারে, আরএফ মেডিকেল ডিভাইসগুলির আউটপুট পাওয়ারের জন্য পরীক্ষা প্রয়োজন,ফুটো প্রবাহ, এবং ক্লিনিকাল নিরাপত্তা এবং কার্যকারিতা নিশ্চিত করার জন্য প্রতিবন্ধকতা মেলে। উচ্চ-ফ্রিকোয়েন্সির ইলেক্ট্রোসার্জিক্যাল ডিভাইসগুলি উচ্চ ঘনত্ব, উচ্চ-ফ্রিকোয়েন্সির বর্তমান ব্যবহার করে স্থানীয় তাপীয় প্রভাব তৈরি করে, কাটা এবং কোগুলেশনের জন্য টিস্যুগুলি বাষ্পীভূত করে বা ব্যাহত করে। এই ডিভাইসগুলি,সাধারণত 200kHz-5MHz পরিসরে কাজ করে, খোলা অস্ত্রোপচারে (যেমন, সাধারণ অস্ত্রোপচার, স্ত্রীরোগ) এবং এন্ডোস্কোপিক পদ্ধতিতে (যেমন, ল্যাপারোস্কোপি, গ্যাস্ট্রোস্কোপি) ব্যাপকভাবে ব্যবহৃত হয়।.g., 512kHz) উল্লেখযোগ্য কাটা এবং হিমোস্ট্যাসিসের জন্য, উচ্চতর ফ্রিকোয়েন্সি ডিভাইসগুলি (1MHz-5MHz) কম তাপীয় ক্ষতির সাথে সূক্ষ্ম কাটা এবং কোগুলেশন সক্ষম করে, প্লাস্টিক সার্জারি এবং ত্বকের জন্য উপযুক্ত.নিম্ন তাপমাত্রার আরএফ ছুরি এবং নান্দনিক আরএফ সিস্টেমের মতো উচ্চ-ফ্রিকোয়েন্সি ডিভাইসগুলি আবির্ভূত হওয়ার সাথে সাথে পরীক্ষার চ্যালেঞ্জগুলি তীব্রতর হয়। জিবি 9706.202-2021 মান, বিশেষত ধারা 201।5.4, পরিমাপ যন্ত্রপাতি এবং পরীক্ষার প্রতিরোধের উপর কঠোর প্রয়োজনীয়তা আরোপ করে, যা ঐতিহ্যগত পদ্ধতিগুলিকে অপর্যাপ্ত করে তোলে। KP2021 উচ্চ ফ্রিকোয়েন্সির ইলেক্ট্রোসার্জিক্যাল বিশ্লেষক এবং ভেক্টর নেটওয়ার্ক বিশ্লেষক (ভিএনএ) থার্মেজ পরীক্ষায় মূল ভূমিকা পালন করে। এই নিবন্ধটি মান নিয়ন্ত্রণে তাদের অ্যাপ্লিকেশনগুলি পরীক্ষা করে,উৎপাদন বৈধতা, এবং রক্ষণাবেক্ষণ, উচ্চ ফ্রিকোয়েন্সি পরীক্ষার চ্যালেঞ্জ বিশ্লেষণ এবং উদ্ভাবনী সমাধান প্রস্তাব। KP2021 হাই ফ্রিকোয়েন্সি ইলেক্ট্রোসার্জিক্যাল অ্যানালাইজার এর ওভারভিউ এবং ফাংশন কিংপো টেকনোলজি দ্বারা বিকাশিত কেপি ২০২১, উচ্চ-ফ্রিকোয়েন্সি ইলেক্ট্রোসার্জিকাল ইউনিটগুলির (ইএসইউ) জন্য একটি নির্ভুলতা পরীক্ষার যন্ত্র। এর মূল বৈশিষ্ট্যগুলির মধ্যে রয়েছেঃ বিস্তৃত পরিমাপ পরিসীমা: পাওয়ার (0-500W, ±3% বা ±1W), ভোল্টেজ (0-400V RMS, ±2% বা ±2V), বর্তমান (2mA-5000mA, ±1%), উচ্চ-ফ্রিকোয়েন্সি ফুটো বর্তমান (2mA-5000mA, ±1%), লোড প্রতিবন্ধকতা (0-6400Ω, ±1%). ফ্রিকোয়েন্সি কভারেজ: 50kHz-200MHz, অবিচ্ছিন্ন, পালসযুক্ত এবং উদ্দীপনা মোড সমর্থন করে। বিভিন্ন পরীক্ষার মোড: আরএফ পাওয়ার পরিমাপ (মোনোপোলার/বাইপোলার), পাওয়ার লোড কার্ভ টেস্টিং, ফুটো বর্তমান পরিমাপ, এবং REM/ARM/CQM (রিটার্ন ইলেক্ট্রোড মনিটরিং) টেস্টিং। অটোমেশন এবং সামঞ্জস্যতা: স্বয়ংক্রিয় পরীক্ষার সমর্থন করে, ভ্যালিল্যাব, কনমেড এবং এরবের মতো ব্র্যান্ডগুলির সাথে সামঞ্জস্যপূর্ণ এবং এলআইএমএস / এমইএস সিস্টেমের সাথে সংহত করে। আইইসি ৬০৬০২-২-২ এর সাথে সামঞ্জস্যপূর্ণ, কেপি ২০২১ গবেষণা ও উন্নয়ন, উৎপাদন মান নিয়ন্ত্রণ এবং হাসপাতালের সরঞ্জাম রক্ষণাবেক্ষণের জন্য আদর্শ। নেটওয়ার্ক বিশ্লেষকের ওভারভিউ এবং ফাংশন ভেক্টর নেটওয়ার্ক বিশ্লেষক (ভিএনএ) আরএফ নেটওয়ার্ক প্যারামিটারগুলি পরিমাপ করে, যেমন এস-প্যারামিটারগুলি (বিভ্রান্তি প্যারামিটারগুলি, প্রতিফলন সহগ S11 এবং সংক্রমণ সহগ S21 সহ) ।মেডিকেল আরএফ ডিভাইস টেস্টিং এর অ্যাপ্লিকেশন অন্তর্ভুক্ত: প্রতিবন্ধকতা মেলে: বিভিন্ন ত্বকের প্রতিরোধের অধীনে স্থিতিশীল আউটপুট নিশ্চিত করার জন্য প্রতিফলন ক্ষতি হ্রাস করে আরএফ শক্তি স্থানান্তর দক্ষতা মূল্যায়ন করে। ফ্রিকোয়েন্সি রেসপন্স বিশ্লেষণ: একটি বিস্তৃত ব্যান্ড (10kHz-20MHz) জুড়ে বিস্তৃতি এবং ফেজ প্রতিক্রিয়া পরিমাপ করে, প্যারামিটার পরামিতি থেকে বিকৃতি সনাক্ত করে। প্রতিবন্ধকতা বর্ণালী পরিমাপ: স্মিথ চার্ট বিশ্লেষণের মাধ্যমে প্রতিরোধ, প্রতিক্রিয়াশীলতা এবং ফেজ কোণকে পরিমাণযুক্ত করে, GB 9706.202-2021 এর সাথে সম্মতি নিশ্চিত করে। সামঞ্জস্য: আধুনিক ভিএনএগুলি (যেমন, কীসাইট, অ্যানিটসু) 0.1 ডিবি নির্ভুলতার সাথে 70GHz পর্যন্ত ফ্রিকোয়েন্সিগুলিকে কভার করে, আরএফ মেডিকেল ডিভাইস আর অ্যান্ড ডি এবং বৈধকরণের জন্য উপযুক্ত। এই ক্ষমতাগুলি থার্মাজেজের আরএফ চেইন বিশ্লেষণের জন্য ভিএনএকে আদর্শ করে তোলে, যা ঐতিহ্যবাহী পাওয়ার মিটারের পরিপূরক। উচ্চ-ফ্রিকোয়েন্সি পরীক্ষায় স্ট্যান্ডার্ড প্রয়োজনীয়তা এবং প্রযুক্তিগত চ্যালেঞ্জ GB 9706.202-2021 স্ট্যান্ডার্ডের সারসংক্ষেপ ধারা 201।5.4 GB 9706.202-2021 এর নির্দেশাবলী অনুযায়ী উচ্চ-ফ্রিকোয়েন্সির বর্তমান পরিমাপকারী যন্ত্রপাতিগুলি 10kHz থেকে ডিভাইসের মৌলিক ফ্রিকোয়েন্সির পাঁচগুণ পর্যন্ত কমপক্ষে 5% সত্যিকারের RMS নির্ভুলতা প্রদান করে।পরীক্ষার প্রতিরোধকগুলির নামমাত্র শক্তি পরীক্ষার খরচ কমপক্ষে 50% হতে হবে, একই ফ্রিকোয়েন্সি পরিসরে 3% এর মধ্যে প্রতিরোধ উপাদান নির্ভুলতা এবং 8.5 ° এর বেশি নয় এমন একটি প্রতিরোধের ফেজ কোণ সহ। যদিও এই প্রয়োজনীয়তা ঐতিহ্যগত 500kHz ইলেক্ট্রোসার্জিক্যাল ইউনিটগুলির জন্য পরিচালনাযোগ্য, তবে 4MHz এর উপরে কাজ করা থার্ম্যাজ ডিভাইসগুলি উল্লেখযোগ্য চ্যালেঞ্জের মুখোমুখি হয়,যেমন প্রতিরোধকের প্রতিরোধের বৈশিষ্ট্যগুলি সরাসরি শক্তি পরিমাপ এবং কর্মক্ষমতা মূল্যায়নের নির্ভুলতাকে প্রভাবিত করে. উচ্চ ফ্রিকোয়েন্সিতে প্রতিরোধকের মূল বৈশিষ্ট্য ত্বকের উপর প্রভাব ত্বকের প্রভাবের ফলে উচ্চ-ফ্রিকোয়েন্সির স্রোত একটি কন্ডাক্টরের পৃষ্ঠের উপর কেন্দ্রীভূত হয়।কার্যকরী পরিবাহী এলাকা হ্রাস এবং DC বা নিম্ন ফ্রিকোয়েন্সি মান তুলনায় প্রতিরোধের প্রকৃত প্রতিরোধের বৃদ্ধিএর ফলে পাওয়ার গণনার ত্রুটি ১০% এর বেশি হতে পারে। ঘনিষ্ঠতা প্রভাব ঘনিষ্ঠভাবে সাজানো কন্ডাক্টরগুলিতে ত্বকের প্রভাবের পাশাপাশি ঘনিষ্ঠতা প্রভাব, চৌম্বকীয় ক্ষেত্রের মিথস্ক্রিয়াগুলির কারণে অসম বর্তমান বিতরণকে আরও বাড়িয়ে তোলে।থার্ম্যাজের আরএফ প্রোব এবং লোড ডিজাইনে, এতে ক্ষতি এবং তাপীয় অস্থিরতা বৃদ্ধি পায়। পরজীবী পরামিতি উচ্চ ফ্রিকোয়েন্সিতে, প্রতিরোধকগুলি একটি জটিল প্রতিবন্ধকতা গঠন করে, যা Z = R + jX (X = XL - XC) গঠন করে।পরজীবী ইন্ডাক্ট্যান্স এক্সএল = 2πfL প্রতিক্রিয়াশীলতা উত্পন্ন করে, ফ্রিকোয়েন্সির সাথে বৃদ্ধি পায়, যখন প্যারাসাইটিক ক্যাপাসিট্যান্স প্রতিক্রিয়াশীলতা XC = 1/ ((2πfC) উত্পন্ন করে), ফ্রিকোয়েন্সির সাথে হ্রাস পায়। এর ফলে 0 ° থেকে একটি ফেজ কোণ বিচ্যুতি, সম্ভাব্য 8.5 ° অতিক্রম করে,মান লঙ্ঘন এবং অস্থির আউটপুট বা অতিরিক্ত উত্তাপের ঝুঁকি. প্রতিক্রিয়াশীল পরামিতি ইন্ডাক্টিভ (এক্সএল) এবং ক্যাপাসিটিভ (এক্সসি) রিঅ্যাক্ট্যান্স দ্বারা চালিত প্রতিক্রিয়াশীল পরামিতিগুলি প্রতিরোধের ক্ষেত্রে অবদান রাখে Z = R + jX। যদি এক্সএল এবং এক্সসি ভারসাম্যহীন বা অত্যধিক হয় তবে ফেজ কোণটি উল্লেখযোগ্যভাবে বিচ্যুত হয়,পাওয়ার ফ্যাক্টর এবং শক্তি স্থানান্তর দক্ষতা হ্রাস. নন-ইন্ডাক্টিভ রেসিস্টরগুলির সীমাবদ্ধতা নন-ইন্ডাক্টিভ রেসিস্টরগুলি, পাতলা-ফিল্ম, পুরু-ফিল্ম, বা কার্বন-ফিল্ম কাঠামো ব্যবহার করে পরজীবী ইন্ডাক্ট্যান্সকে হ্রাস করার জন্য ডিজাইন করা হয়েছে, এখনও 4MHz এর উপরে চ্যালেঞ্জের মুখোমুখিঃ অবশিষ্ট পরজীবী অনুঘটকতা: এমনকি ছোট ইন্ডাক্ট্যান্স উচ্চ ফ্রিকোয়েন্সিতে উল্লেখযোগ্য প্রতিক্রিয়াশীলতা তৈরি করে। পরজীবী ক্ষমতা: ক্যাপাসিটিভ রিঅ্যাক্ট্যান্স হ্রাস পায়, যা রেজোনেন্স সৃষ্টি করে এবং খাঁটি প্রতিরোধের থেকে বিচ্যুত হয়। ব্রডব্যান্ড স্থিতিশীলতা: 10kHz-20MHz থেকে 8.5° পর্যন্ত ফেজ কোণ এবং ±3% প্রতিরোধের নির্ভুলতা বজায় রাখা চ্যালেঞ্জিং। উচ্চ-শক্তির অপচয়: পাতলা-ফিল্ম কাঠামোর তাপ অপচয় কম, শক্তি হ্যান্ডলিং সীমাবদ্ধ বা জটিল নকশা প্রয়োজন। তাপমাত্রা পরীক্ষায় KP2021 এবং VNA এর সমন্বিত প্রয়োগ টেস্ট ওয়ার্কফ্লো ডিজাইন প্রস্তুতি: KP2021 কে থার্ম্যাজ ডিভাইসে সংযুক্ত করুন, লোড প্রতিরোধের সেটিং করুন (উদাহরণস্বরূপ, ত্বকের অনুকরণ করতে 200Ω) । কেবেল পরজীবীগুলি নির্মূল করতে ক্যাবলগুলিকে ক্যালিব্রেট করার জন্য আরএফ চেইনে ভিএনএ সংহত করুন। শক্তি এবং ফুটো পরীক্ষা: KP2021 আউটপুট পাওয়ার, ভোল্টেজ / বর্তমান RMS, এবং ফুটো বর্তমান পরিমাপ করে, GB মানগুলির সাথে সম্মতি নিশ্চিত করে এবং REM কার্যকারিতা পর্যবেক্ষণ করে। প্রতিবন্ধকতা এবং ফেজ কোণ বিশ্লেষণ: ভিএনএ ফ্রিকোয়েন্সি ব্যান্ডটি স্ক্যান করে, এস-প্যারামিটারগুলি পরিমাপ করে এবং ফেজ কোণ গণনা করে। যদি > 8.5 ° হয় তবে মেলে এমন নেটওয়ার্ক বা প্রতিরোধক কাঠামো সামঞ্জস্য করুন। উচ্চ-ফ্রিকোয়েন্সি প্রভাবের ক্ষতিপূরণ: KP2021 ′s পালস মোড টেস্টিং, VNA ′s টাইম-ডোমেইন রিফ্লেক্টমেট্রি (TDR) এর সাথে মিলিয়ে, সিগন্যাল বিকৃতি সনাক্ত করে, ডিজিটাল অ্যালগরিদমগুলি ত্রুটিগুলির ক্ষতিপূরণ দেয়। যাচাইকরণ এবং রিপোর্টিং: অটোমেটেড সিস্টেমে ডেটা একীভূত করুন, পাওয়ার লোড কার্ভ এবং প্রতিরোধের বর্ণালী সহ GB 9706.202-2021- সামঞ্জস্যপূর্ণ প্রতিবেদন তৈরি করুন। কেপি ২০২১ ত্বকের প্রতিবন্ধকতা (50-500Ω) অনুকরণ করে ত্বক / নিকটবর্তী প্রভাব এবং সঠিক পাঠ্যগুলি পরিমাণযুক্ত করে। ভিএনএএএস এস 11 পরিমাপগুলি পরজীবী পরামিতিগুলি গণনা করে, 1 এর কাছাকাছি পাওয়ার ফ্যাক্টর নিশ্চিত করে। উদ্ভাবনী সমাধান প্রতিরোধক উপাদান এবং কাঠামো অপ্টিমাইজেশান নিম্ন-ইন্ডাক্ট্যান্স ডিজাইন: পাতলা ফিল্ম, পুরু ফিল্ম, বা কার্বন ফিল্ম প্রতিরোধক ব্যবহার করুন, তারের-উন্ড কাঠামো এড়ানো। কম পরজীবী ক্ষমতা: প্যাকেজিং এবং পিন ডিজাইন অপ্টিমাইজ করুন যাতে যোগাযোগের এলাকা কমিয়ে আনা যায়। ওয়াইডব্যান্ড প্রতিরোধের মেলে: পরজীবী প্রভাব কমাতে এবং ফেজ কোণ স্থিতিশীলতা বজায় রাখার জন্য সমান্তরাল কম মানের প্রতিরোধক ব্যবহার করুন। উচ্চ নির্ভুলতা উচ্চ ফ্রিকোয়েন্সি যন্ত্রপাতি প্রকৃত RMS পরিমাপ: KP2021 এবং VNA 30kHz-20MHz জুড়ে নন-সিনোসয়েডাল তরঙ্গরূপ পরিমাপ সমর্থন করে। ব্রডব্যান্ড সেন্সর: নিয়ন্ত্রিত পরজীবী পরামিতি সহ কম ক্ষতি, উচ্চ রৈখিকতা জোড়া নির্বাচন করুন। ক্যালিব্রেশন এবং ভ্যালিডেশন সঠিকতা নিশ্চিত করার জন্য সার্টিফাইড উচ্চ-ফ্রিকোয়েন্সি উত্স ব্যবহার করে নিয়মিত সিস্টেমগুলি ক্যালিব্রেট করুন। পরীক্ষার পরিবেশ এবং সংযোগ অপ্টিমাইজেশান সংক্ষিপ্ত লিড এবং কোএক্সিয়াল সংযোগ: উচ্চ ফ্রিকোয়েন্সির কোঅক্সিয়াল ক্যাবল ব্যবহার করুন যাতে ক্ষয়ক্ষতি এবং প্যারাসাইটগুলিকে কমিয়ে আনা যায়। সুরক্ষা এবং গ্রাউন্ডিং: ইলেকট্রোম্যাগনেটিক ঢাল এবং যথাযথ গ্রাউন্ডিং বাস্তবায়ন করুন হস্তক্ষেপ কমাতে। প্রতিবন্ধকতা মেলে নেটওয়ার্ক: এনার্জি ট্রান্সফারের দক্ষতা সর্বাধিক করার জন্য নেটওয়ার্ক ডিজাইন করুন। উদ্ভাবনী পরীক্ষার পদ্ধতি ডিজিটাল সিগন্যাল প্রসেসিং: পরজীবী বিকৃতি বিশ্লেষণ এবং সংশোধন করার জন্য ফুরিয়ার রূপান্তর প্রয়োগ করুন। মেশিন লার্নিং: হাই ফ্রিকোয়েন্সি আচরণ মডেল এবং পূর্বাভাস, স্বয়ংক্রিয়ভাবে সমন্বয় পরীক্ষার পরামিতি। ভার্চুয়াল যন্ত্রপাতি: রিয়েল-টাইম মনিটরিং এবং ডেটা সংশোধন করার জন্য হার্ডওয়্যার এবং সফটওয়্যার একত্রিত করুন। কেস স্টাডি একটি ৪ মেগাহার্টজ থার্ম্যাজ সিস্টেম পরীক্ষা করার সময়, প্রাথমিক ফলাফলগুলি ৫% পাওয়ার বিচ্যুতি এবং ১০ ডিগ্রি ফেজ কোণ দেখিয়েছে। কেপি ২০২১ অত্যধিক ফুটো প্রবাহ সনাক্ত করেছে, যখন ভিএনএ 0.1μH পরজীবী প্ররোচকতা সনাক্ত করেছে।নিম্ন-ইন্ডাক্ট্যান্স প্রতিরোধক দ্বারা প্রতিস্থাপন এবং মিলে যাওয়া নেটওয়ার্ক অপ্টিমাইজ করার পরে, ফেজ কোণ 5 ° এ নেমে আসে এবং পাওয়ার নির্ভুলতা ± 2% এ পৌঁছে যায়, মান পূরণ করে। সিদ্ধান্ত জিবি ৯৭০৬.২০২-২০২১ মান উচ্চ-ফ্রিকোয়েন্সি পরিবেশে ঐতিহ্যগত পরীক্ষার সীমাবদ্ধতা তুলে ধরে।কেপি ২০২১ এবং ভিএনএ-র সমন্বিত ব্যবহার ত্বকের প্রভাব এবং পরজীবী পরামিতিগুলির মতো চ্যালেঞ্জগুলি সমাধান করে, থার্ম্যাজের ডিভাইসগুলি সুরক্ষা এবং কার্যকারিতা মান পূরণ করে তা নিশ্চিত করে। মেশিন লার্নিং এবং ভার্চুয়াল যন্ত্রপাতি অন্তর্ভুক্ত করে ভবিষ্যতের অগ্রগতি,উচ্চ-ফ্রিকোয়েন্সির চিকিৎসা সরঞ্জামগুলির পরীক্ষার ক্ষমতা আরও বাড়াবে. https://www.batterytestingmachine.com/videos-51744861-kp2021-electrosurgical-unit-analyzer.html
আরো দেখুন
কোম্পানির সর্বশেষ খবর সম্পর্কে KINGPO ২০২৩ সালের ৯২তম চীন আন্তর্জাতিক চিকিৎসা সরঞ্জাম (শরৎ) এক্সপোতে আপনার সাথে দেখা করবে
KINGPO ২০২৩ সালের ৯২তম চীন আন্তর্জাতিক চিকিৎসা সরঞ্জাম (শরৎ) এক্সপোতে আপনার সাথে দেখা করবে

2025-08-28

.gtr-container-k7p2q9 { font-family: Verdana, Helvetica, "Times New Roman", Arial, sans-serif; color: #333; line-height: 1.6; padding: 20px; max-width: 960px; margin: 0 auto; box-sizing: border-box; border: none; } .gtr-container-k7p2q9 p { margin-bottom: 1em; text-align: left !important; font-size: 14px; } .gtr-container-k7p2q9 img { max-width: 100%; height: auto; display: block; margin: 15px 0; box-sizing: border-box; } .gtr-container-k7p2q9 .gtr-image-gallery-k7p2q9 { display: flex; flex-direction: column; gap: 15px; margin-bottom: 20px; } .gtr-container-k7p2q9 .gtr-main-title-k7p2q9 { font-size: 18px; font-weight: bold; margin-bottom: 1.5em; color: #0056b3; text-align: center !important; } .gtr-container-k7p2q9 .gtr-subtitle-k7p2q9 { font-size: 16px; font-weight: bold; margin-top: 2em; margin-bottom: 1em; color: #0056b3; border-bottom: 1px solid #eee; padding-bottom: 5px; } .gtr-container-k7p2q9 .gtr-sub-subtitle-k7p2q9 { font-size: 14px; font-weight: bold; margin-top: 1.5em; margin-bottom: 0.8em; color: #007bff; } .gtr-container-k7p2q9 ul, .gtr-container-k7p2q9 ol { list-style: none !important; margin: 0 0 1em 0 !important; padding: 0 !important; } .gtr-container-k7p2q9 li { position: relative; padding-left: 25px; margin-bottom: 0.5em; font-size: 14px; text-align: left !important; } .gtr-container-k7p2q9 ul li::before { content: "•"; color: #007bff; font-weight: bold; position: absolute; left: 0; top: 0; font-size: 1.2em; line-height: 1.6; } .gtr-container-k7p2q9 ol li::before { content: counter(list-item) "."; counter-increment: none; color: #007bff; font-weight: bold; position: absolute; left: 0; top: 0; width: 20px; text-align: right; font-size: 1em; line-height: 1.6; } .gtr-container-k7p2q9 .gtr-section-k7p2q9 { margin-bottom: 30px; padding: 0; } .gtr-container-k7p2q9 .gtr-center-content-k7p2q9 { text-align: center !important; } .gtr-container-k7p2q9 .gtr-center-content-k7p2q9 img { margin-left: auto; margin-right: auto; } .gtr-container-k7p2q9 .gtr-highlight-k7p2q9 { font-weight: bold; color: #d9534f; } @media (min-width: 768px) { .gtr-container-k7p2q9 { padding: 30px; } .gtr-container-k7p2q9 .gtr-image-gallery-k7p2q9 { flex-direction: row; flex-wrap: wrap; justify-content: space-between; } .gtr-container-k7p2q9 .gtr-image-gallery-k7p2q9 img { width: calc(50% - 7.5px); margin: 0; } .gtr-container-k7p2q9 .gtr-main-title-k7p2q9 { font-size: 18px; } .gtr-container-k7p2q9 .gtr-subtitle-k7p2q9 { font-size: 18px; } .gtr-container-k7p2q9 .gtr-sub-subtitle-k7p2q9 { font-size: 16px; } } ক্যান্টন ফেয়ার কমপ্লেক্স ও কিংপো টেকনোলজি প্রদর্শনী ক্যান্টন ফেয়ার কমপ্লেক্স সম্পর্কে চিন আমদানি ও রপ্তানি মেলা কমপ্লেক্স (যা ক্যান্টন ফেয়ার কমপ্লেক্স নামেও পরিচিত) গুয়াংঝুর হাইজু জেলার পাঝু দ্বীপে অবস্থিত। এটির মোট নির্মাণ এলাকা ১.৬২ মিলিয়ন বর্গমিটারের বেশি এবং ৬২০,০০০ বর্গমিটার প্রদর্শনী এলাকা রয়েছে, যার মধ্যে ৫০০,০০০ বর্গমিটার অভ্যন্তরীণ প্রদর্শনী স্থান এবং ১,১৬,০০০ বর্গমিটার বহিরঙ্গন প্রদর্শনী স্থান রয়েছে। ক্যান্টন ফেয়ার কমপ্লেক্স বিশ্বের বৃহত্তম কনভেনশন এবং প্রদর্শনী কমপ্লেক্স। কমপ্লেক্সটিতে প্যাভিলিয়ন এ, বি, সি, এবং ডি, ক্যান্টন ফেয়ার হল, এবং ক্যান্টন ফেয়ার বিল্ডিং টাওয়ার এ (ওয়েস্টিন ক্যান্টন ফেয়ার হোটেল) এবং বি রয়েছে। ক্যান্টন ফেয়ার কমপ্লেক্স একটি প্রধান স্থানে অবস্থিত এবং এর পরিবহন ব্যবস্থা সুবিধাজনক, যা ঝুজিয়াং নিউ টাউন, পাঝু ই-কমার্স জোন, গুয়াংজু সায়েন্স সিটি এবং গুয়াংজু ইউনিভার্সিটি টাউনের মতো প্রধান শহুরে উন্নয়ন এলাকার কাছাকাছি অবস্থিত। কমপ্লেক্সটি মানবিক নীতি, সবুজ পরিবেশ, উচ্চ প্রযুক্তি এবং বুদ্ধিমান প্রযুক্তির সাথে নির্বিঘ্নে একত্রিত হয়েছে, যা বিশ্বের কাছে একটি উজ্জ্বল মুক্তোর মতো জ্বলজ্বল করে। একটি জাতীয়-স্তরের প্রদর্শনী প্ল্যাটফর্ম হিসাবে, ক্যান্টন ফেয়ার কমপ্লেক্স কেবল চীন আমদানি ও রপ্তানি মেলার (ক্যান্টন ফেয়ার) স্থানই নয়, যা "চীনের ১ নম্বর প্রদর্শনী" হিসাবে পরিচিত, এটি ব্র্যান্ড প্রদর্শনী এবং বিভিন্ন ইভেন্টের জন্য একটি প্রিমিয়াম প্ল্যাটফর্ম হিসাবেও কাজ করে, সেইসাথে উচ্চ-মানের আন্তর্জাতিক এবং দেশীয় সম্মেলনের জন্য একটি প্রধান স্থান। ঠিকানা: নং ৩৮২, ইউয়েজিয়াং মিডল রোড, হাইজু জেলা, গুয়াংজু পরিবহন নির্দেশিকা সাবওয়ে পরিবহন আপনি ক্যান্টন ফেয়ার কমপ্লেক্সে যেতে মেট্রো লাইন ৮ ব্যবহার করতে পারেন। সিংগংডং স্টেশনের এ (A) নম্বর প্রস্থান ক্যান্টন ফেয়ার কমপ্লেক্স এরিয়া এ-তে যায়। পাঝু স্টেশনের এ (A) এবং বি (B) নম্বর প্রস্থান ক্যান্টন ফেয়ার কমপ্লেক্স এরিয়া বি-তে যায়। পাঝু স্টেশনের সি (C) নম্বর প্রস্থান থেকে হেঁটে ৩০০ মিটার পশ্চিমে ক্যান্টন ফেয়ার কমপ্লেক্স এরিয়া সি-তে যান। বিমানবন্দর উত্তর স্টেশন/দক্ষিণ স্টেশন-----সিংগং ইস্ট স্টেশন/পাঝু স্টেশন লাইন ১ (উত্তর সম্প্রসারণ) বিমানবন্দর উত্তর স্টেশন (টার্মিনাল ২)/বিমানবন্দর দক্ষিণ স্টেশন (টার্মিনাল ১) - তিয়ুসি রোড স্টেশন (লাইন ৩-এ স্থানান্তর) - কেকুন স্টেশন (লাইন ৮-এ স্থানান্তর) - সিংগংডং স্টেশন (ক্যান্টন ফেয়ার কমপ্লেক্স এরিয়া এ)/পাঝু স্টেশন (ক্যান্টন ফেয়ার কমপ্লেক্স এরিয়া বি এবং সি) ট্রেন স্টেশন থেকে ক্যান্টন ফেয়ার কমপ্লেক্সে গুয়াংজু রেলওয়ে স্টেশন থেকে: মেট্রো লাইন ২ (গুয়াংজু সাউথ স্টেশনের দিকে) চ্যাংগং স্টেশন পর্যন্ত যান, লাইন ৮ (ওয়ানশেংওয়েই স্টেশনের দিকে) -এ স্থানান্তর করুন এবং সিংগংডং স্টেশন (এলাকা এ) বা পাঝু স্টেশন (এলাকা বি বা সি)-এ নামুন। গুয়াংজু ইস্ট রেলওয়ে স্টেশন থেকে: মেট্রো লাইন ৩ (প্যানইউ স্কয়ার স্টেশনের দিকে) কেকুন স্টেশন পর্যন্ত যান, লাইন ৮ (ওয়ানশেংওয়েই স্টেশনের দিকে) -এ স্থানান্তর করুন এবং সিংগংডং স্টেশন (এলাকা এ) বা পাঝু স্টেশন (এলাকা বি বা সি)-এ নামুন। গুয়াংজু সাউথ স্টেশন থেকে: মেট্রো লাইন ২ (জিয়াওওয়াংগং স্টেশনের দিকে) চ্যাংগং স্টেশন পর্যন্ত যান, লাইন ৮ (ওয়ানশেংওয়েই স্টেশনের দিকে) -এ স্থানান্তর করুন এবং সিংগংডং রোড স্টেশন (প্রদর্শনী হল এলাকা এ-এর জন্য) বা পাঝু স্টেশন (প্রদর্শনী হল এলাকা বি এবং সি-এর জন্য)-এ নামুন। ট্যাক্সি গুয়াংজুর পাবলিক ট্রান্সপোর্ট সিস্টেমের একটি অপরিহার্য অংশ। এগুলি সুবিধাজনক এবং দ্রুত, হাত নাড়লেই থামানো যায় এবং ভাড়ার মিটার চালু থাকে। অনুগ্রহ করে মনে রাখবেন: ট্যাক্সিগুলি শুধুমাত্র প্রদর্শনী হল এলাকা এ-এর ঝাঞ্চাংজং রোডের ট্যাক্সি লেন এবং প্রদর্শনী হল এলাকা সি-এর পূর্ব দিকের পিক-আপ পয়েন্টে যাত্রী উঠাতে ও নামাতে পারে। অন্য কোনো স্থানে যাত্রী উঠানো বা নামানো নিষিদ্ধ। ড্রাইভিং নির্দেশনার জন্য, কেবল ক্যান্টন ফেয়ার কমপ্লেক্সে নেভিগেট করুন। ক্যান্টন ফেয়ার কমপ্লেক্স এরিয়া এ, নং ৩৮০, ইউয়েজিয়াং মিডল রোড, হাইজু জেলা, গুয়াংজু সিটি, গুয়াংডং প্রদেশ কিংপো টেকনোলজি প্রদর্শনী এবং পরিষেবা কিংপোপ্রযুক্তি প্রদর্শনী এবং পরিষেবা: একটি কোম্পানি হিসাবে যা চিকিৎসা ডিভাইসের গবেষণা ও উন্নয়ন এবং উৎপাদনে বিশেষজ্ঞ, ডংগুয়ান কিংপো মেশিনারি টেকনোলজি কোং, লিমিটেড গ্রাহকদের উচ্চ-মানের পণ্য এবং পরিষেবা প্রদানের জন্য সর্বদা প্রতিশ্রুতিবদ্ধ। এই প্রদর্শনীতে, আমরা সর্বশেষ চিকিৎসা ডিভাইস পণ্য এবং প্রযুক্তি প্রদর্শন করব, যার মধ্যে রয়েছে তবে সীমাবদ্ধ নয়: দেশীয়ভাবে তৈরি IEC60601: ইলেক্ট্রোসার্জিক্যাল ইউনিট বিশ্লেষক, নিরপেক্ষ ইলেক্ট্রোড তাপমাত্রা বৃদ্ধি পরীক্ষক, ইম্পিডেন্স পরীক্ষক, ইত্যাদি। দেশীয়ভাবে তৈরি YY1712 সমাধান: অস্ত্রোপচার রোবট পরীক্ষার সমাধান বিভিন্ন ডিফিব্রিলেটর পালস জেনারেটর ইইজি (EEG) সংকেত সিমুলেটর ISO80369/YY0916 সম্পূর্ণ সমাধান IVD (IEC61010.GB42125 সিরিজ স্ট্যান্ডার্ড) পরীক্ষার সমাধান বৈদ্যুতিক উদ্দীপনা গুণমান বিশ্লেষণ সিস্টেম নির্ভরযোগ্যতা সমাধান স্মার্ট ম্যানুফ্যাকচারিং সলিউশন: চিকিৎসা ডিভাইস প্রস্তুতকারকদের উৎপাদন দক্ষতা উন্নত করতে সাহায্য করার জন্য দক্ষ এবং বুদ্ধিমান উৎপাদন সমাধান প্রদান করুন। পেশাদার পরিষেবা: আমাদের বিশেষজ্ঞ দল সাইটে আপনার প্রশ্নের উত্তর দেবে এবং পেশাদার প্রযুক্তিগত সহায়তা ও পরামর্শ পরিষেবা প্রদান করবে। আপনি যাতে আমাদের বুথটি সহজে পরিদর্শন করতে পারেন তা নিশ্চিত করতে, আমরা বিশেষভাবে একটি নিবন্ধন পোর্টাল সরবরাহ করেছি। নীচের QR কোডটি স্ক্যান করে নিবন্ধন করার মাধ্যমে, আপনি সাইটে লাইন এড়িয়ে যাওয়ার সুবিধা উপভোগ করতে পারবেন এবং আমাদের পণ্য ও পরিষেবা সম্পর্কে আরও দক্ষতার সাথে জানতে পারবেন। আমরা CMEF-এ আপনার সাথে দেখা করার জন্য উন্মুখ, চিকিৎসা ডিভাইস শিল্পের ভবিষ্যৎ নিয়ে আলোচনা করার জন্য। ডংগুয়ান জিংবাং মেশিনারি টেকনোলজি কোং, লিমিটেড প্রযুক্তিগত উদ্ভাবন এবং পরিষেবা শ্রেষ্ঠত্বের জন্য প্রতিশ্রুতিবদ্ধ, আপনার সাথে একটি উজ্জ্বল ভবিষ্যৎ তৈরি করতে কাজ করছে। আমাদের বুথ নম্বর মনে রাখবেন: 19.2G22. আমরা গুয়াংজুতে আপনার জন্য অপেক্ষা করব! আমরা আপনাকে দেখার জন্য উন্মুখ!
আরো দেখুন
কোম্পানির সর্বশেষ খবর সম্পর্কে ডিফিব্রিলেশন সুরক্ষা পরীক্ষা কি সঠিকভাবে করা হয়েছে?
ডিফিব্রিলেশন সুরক্ষা পরীক্ষা কি সঠিকভাবে করা হয়েছে?

2025-08-25

.gtr-container-x7y2z9w1 { font-family: Verdana, Helvetica, "Times New Roman", Arial, sans-serif; color: #333; line-height: 1.6; padding: 15px; box-sizing: border-box; max-width: 100%; overflow-x: hidden; } .gtr-container-x7y2z9w1__title { font-size: 18px; font-weight: bold; margin-bottom: 20px; color: #0056b3; text-align: left; } .gtr-container-x7y2z9w1__paragraph { font-size: 14px; margin-bottom: 15px; text-align: left !important; color: #333; } .gtr-container-x7y2z9w1__image { max-width: 100%; height: auto; display: block; margin: 15px 0; } .gtr-container-x7y2z9w1__image-group { display: flex; flex-direction: column; gap: 15px; margin: 15px 0; } .gtr-container-x7y2z9w1__image-group img { max-width: 100%; height: auto; display: block; } @media (min-width: 768px) { .gtr-container-x7y2z9w1 { padding: 25px; } .gtr-container-x7y2z9w1__title { font-size: 20px; } .gtr-container-x7y2z9w1__image-group { flex-direction: row; flex-wrap: wrap; justify-content: space-between; } .gtr-container-x7y2z9w1__image-group img { width: calc(50% - 7.5px); margin: 0; } } ডিফিব্রেশন সুরক্ষা পরীক্ষা কি সঠিকভাবে করা হয়েছে? ডিফিব্রিলার সুরক্ষা, অনেক মেডিকেল ডিভাইসের জন্য একটি মৌলিক নিরাপত্তা এবং কর্মক্ষমতা প্রয়োজনীয়তা, পরীক্ষার জন্য অনেকগুলি মানদণ্ডের প্রয়োজন, যার মধ্যে সাধারণ-মোড, ডিফারেনশিয়াল-মোড,এবং শক্তি হ্রাস পরীক্ষাএই প্রয়োজনীয়তাটি সম্ভবত অনেকের কাছে পরিচিত, কারণ এটি ইতিমধ্যে GB 9706 সিরিজের পুরানো সংস্করণ এবং অন্যান্য শিল্প মানগুলিতে বিদ্যমান।এই মানগুলি রেফারেন্সের জন্য সার্কিট ডায়াগ্রামও সরবরাহ করে, এবং সবাই বছরের পর বছর ধরে এই অনুশীলন অনুসরণ করেছে, আপাতদৃষ্টিতে কোন সমস্যা ছাড়াই।শিল্পের একজন প্রবীণ সম্প্রতি স্ট্যান্ডার্ড ডিফিব্রিলেটর সার্কিটরির সমস্যা নিয়ে উদ্বেগ প্রকাশ করেছেনবিশেষ করে ইসিজি স্ট্যান্ডার্ডের সিগন্যাল সোর্স সংযোগ। যদি সিগন্যাল উত্স সংযোগটি স্ট্যান্ডার্ড অনুসারে হয় তবে এটি চিত্র 1 এ দেখানো উচিত। তবে আউটপুটটি 20V এর কাছাকাছি হবে এবং ইসিজি মনিটরটি সম্ভবত তাড়াতাড়ি পরিপূর্ণ হবে।স্ট্যান্ডার্ড দ্বারা প্রয়োজনীয় 5mV অর্জন করাও অসম্ভব. যদি সিগন্যাল উৎস মান অনুযায়ী 5mV হয়, সংযোগ পদ্ধতি নিচের চিত্র দেখানো হিসাবে হওয়া উচিত। স্পষ্টতই, GB 9706.227-2021 এর সার্কিটটি সমস্যাযুক্ত। সুতরাং, আসুন GB 9706.227-2021 এর IEC 60601-2-27:2011 সংস্করণটি দেখুন। সার্কিটটি নিম্নরূপ (যদিও এই সার্কিটেরও নিজস্ব সমস্যা রয়েছে). কিন্তু GB 9706.227-2021 এবং IEC 60601-2-27:2011 এর পার্থক্য কেন? সমস্যাটি IEC 60601-2-27:2011+C1 এর সাথে থাকতে পারেঃ2011এই সংশোধনের জন্য ফরাসি সংস্করণে সাধারণ মোড পরীক্ষার সার্কিটটি নিম্নরূপ প্রতিস্থাপন করা প্রয়োজনঃ এটি ইংরেজি এবং ফরাসি সংস্করণে বিভিন্ন সাধারণ-মোড ডিফিব্রিলেশন পরীক্ষার সার্কিটগুলির ফলাফল দেয়। দেশীয় রূপান্তরকারীরা সর্বশেষতম সংশোধনটি ব্যবহার করতে পারে। আসলে, উভয় সার্কিটের কিছু সমস্যা রয়েছে।আইইসি ৬০৬০২-২৭-এ ফিরে তাকানো২০০৫ সংস্করণ, সার্কিট নিম্নরূপঃ এটি এবং ২০১১ সংস্করণের মধ্যে এখনও অনেক পার্থক্য রয়েছে, তবে এটি পূর্ববর্তী দেশীয় GB 9706.25-2005 এর সাথে সামঞ্জস্যপূর্ণ। আসুন ইইজি স্ট্যান্ডার্ডটি দেখুন, যা ইসিজি স্ট্যান্ডার্ডের অনুরূপঃ যেহেতু GB 9706.26-2005 এ কোনও সাধারণ মোড পরীক্ষার প্রয়োজনীয়তা নেই, আমরা সরাসরি GB9706.226-2021 দেখুন এটি আইইসি 60601-2-27 এর সংশোধিত সংস্করণের অনুরূপ, তবে এটিতে কিছু সমস্যা রয়েছে, বিশেষত ডিফিব্রিলেশনের পরে সংকেত উত্স লোড করার সময়।আসুন EEG স্ট্যান্ডার্ড IEC 80601-2-26 এর সর্বশেষ সংস্করণটি দেখুন:2019. এটি আরও স্পষ্ট। ডিফিব্রিলেশনের সময় R1 (100Ω) এবং R2 (50Ω) ব্যবহার করা হয়। ডিফিব্রিলেশনের পরে, সংকেত উত্সটিতে স্যুইচ করুন এবং R4 (100Ω) এবং R2 (50Ω) ব্যবহার করুন। আসুন আসন্ন ইসিজি স্ট্যান্ডার্ড আইইসি 80601-2-86 তাকান। দৃশ্যত, আইইসি তার পূর্ববর্তী ভুল স্বীকার করেছে এবং সাধারণ-মোড পরীক্ষা সার্কিট আপডেট করেছে,যা মূলত আইইসি ৮০৬০২-২৬ এর সাথে সামঞ্জস্যপূর্ণ:2019যাইহোক, একটি বিবরণ উল্লেখ করা মূল্যবানঃ R3 এর প্রতিরোধের মান ভিন্নঃ এক ক্ষেত্রে 470kΩ এবং অন্যটিতে 390kΩ। সুতরাং, এটা প্রায় নিশ্চিত যে বর্তমান মানের সাধারণ-মোড ডিফিব্রিলেশন সার্কিটে কিছু ভুল আছে। কেন কেউ এটি লক্ষ্য করেনি?আমার ধারণা যদিও স্ট্যান্ডার্ডটিতে ডিফিব্রিলেশন পরীক্ষার জন্য সার্কিট ডায়াগ্রাম অন্তর্ভুক্ত রয়েছে, বেশিরভাগ মানুষের কাছে প্রকৃত পরীক্ষার জন্য তাদের নিজস্ব সার্কিট সেট আপ করার বিলাসিতা নেই। শিল্পে সর্বাধিক ব্যবহৃত ডিভাইসগুলি হ'ল জার্মান জিউস এবং মার্কিন সম্মতি ওয়েস্ট মেগাপুলস।এই ডিভাইসগুলির অভ্যন্তরীণ সার্কিট্রি খুব কমই অধ্যয়ন করা হয়. উপরন্তু, সাধারণ মোড ডিফিব্রিলেশন পরীক্ষা করার সময়, ডিফিব্রিলেশন করার আগে স্ট্যান্ডার্ডের প্রয়োজনীয়তা পূরণের জন্য সংকেত ব্যাপ্তি সামঞ্জস্য করা হয়। তারপরে ডিফিব্রিলেশন করা হয়,এবং সিগন্যাল উৎস আবার চালু করা হয় ডিফিব্রিলেশনের আগে এবং পরে ব্যাপ্তি পরিবর্তন তুলনা করতেসুতরাং, যতক্ষণ পরীক্ষা সম্পন্ন হয় ততক্ষণ অভ্যন্তরীণ সার্কিট্রিগুলির নির্দিষ্ট বিবরণগুলিতে খুব কম মনোযোগ দেওয়া হয়। এখন যেহেতু আমরা এই সমস্যাটি আবিষ্কার করেছি, আসুন এই দুটি ডিভাইসের অভ্যন্তরীণ সার্কিটের বিশদ বিশ্লেষণ করি। প্রথমত, আসুন জিউসের দেওয়া অভ্যন্তরীণ সার্কিট ডায়াগ্রামটি দেখিঃ স্পষ্টতই,100Ω প্রতিরোধক ভাগ করা হয়, R4 50Ω এবং 400Ω এর মধ্যে স্যুইচ করে, এবং সংকেত উত্স শুধুমাত্র একটি 470kΩ প্রতিরোধক ব্যবহার করে। উপরন্তু, আউটপুট সার্কিট সংযোগকারী নকশা কারণে,সিগন্যাল উৎস লোড করার জন্য ডিফিব্রিলেশনের আগে এবং পরে সংযোগকারীগুলি স্যুইচ করা প্রয়োজন. অতএব, ইইজি টেস্টিং কোন উল্লেখযোগ্য সমস্যা উপস্থাপন করা উচিত নয়, এবং সম্ভবত তাই করতে থাকবে।প্রতিরোধক মান ছোটখাট অসঙ্গতি আছে (যদিও আমি ব্যক্তিগতভাবে বিশ্বাস করি এই একটি উল্লেখযোগ্য সমস্যা নয়, যতক্ষণ সিগন্যালের বিস্তৃতি সামঞ্জস্য করা যায়) । সর্বশেষ জিউস V1 এবং V2 সার্কিট ডায়াগ্রাম 390kΩ প্রতিরোধক একটি পরিবর্তন দেখায়, R7 এবং R8 যোগ সঙ্গে. যদিও মান চিহ্নিত করা হয় না,এটা সম্ভবত এটি উভয় EEG এবং ইসিজি প্রয়োজনীয়তা পূরণ করার উদ্দেশ্যে করা হয়. কমপ্লায়েন্স ওয়েস্টের মেগাপুলস বিভিন্ন মডেলের অফার দেয়,D5-P 2011V2 স্পষ্টভাবে সর্বশেষ এবং ভবিষ্যতের ইসিজি মান পূরণ করে এবং একটি সঠিক সংযোগ স্কিম প্রদান করে (এমনকি পৃথক R4 ছাড়া), কিন্তু এটি ইইজি এর জন্য কম উপযুক্ত। ডি-৫-পি সার্কিট দেখে মনে হচ্ছে ইইজি এবং ইসিজি স্ট্যান্ডার্ড পূরণ করেছে, কিন্তু ইসিজি নয়। অবশেষে, সর্বশেষ D8-PF সংকেত স্পষ্টভাবে সর্বশেষ EEG এবং EKG মান বিবেচনা করে। অতএব, আপনি যদি ডিফিব্রিলার সাধারণ মোড পরীক্ষা কঠোরভাবে অনুসরণ করতে চান,অভ্যন্তরীণ সার্কিটটি সঠিক মানদণ্ডের প্রয়োজনীয়তা পূরণ করে কিনা তা নিশ্চিত করার জন্য আপনার ডিফিব্রিলার পরীক্ষার সরঞ্জামগুলির মডেল এবং ম্যানুয়ালটি পরীক্ষা করতে হবেযদিও কঠোরভাবে বলতে গেলে, মানদণ্ডের পরিবর্তনগুলি পরীক্ষার ফলাফলের উপর খুব কম প্রভাব ফেলে, তবে আপনি যদি এমন একজন শিক্ষকের মুখোমুখি হন যিনি খুব পছন্দসই হন তবে এটি এখনও উদ্বেগের বিষয়।
আরো দেখুন
সম্পর্কে সর্বশেষ কোম্পানির কেস কিংপো টেকনোলজি উন্নত সম্মতি পরীক্ষার সরঞ্জাম দিয়ে টিইউভি এসইডির কার্যক্রমকে শক্তিশালী করে
কিংপো টেকনোলজি উন্নত সম্মতি পরীক্ষার সরঞ্জাম দিয়ে টিইউভি এসইডির কার্যক্রমকে শক্তিশালী করে

2025-06-11

  অর্ডারে কিংপো-এর ফ্ল্যাগশিপ কমপ্লায়েন্স সরঞ্জাম রয়েছে, যা পূরণ করার জন্য ডিজাইন করা হয়েছে IEC 62368-1 এবং অন্যান্য আন্তর্জাতিক নিরাপত্তা মান: পিঙ্ক নয়েজ জেনারেটর (মডেল ৯২৮০): IEC 62368-1 পরিশিষ্ট E অনুযায়ী অডিও পারফরম্যান্স পরীক্ষার নিশ্চয়তা দেয়। ইম্পালস টেস্ট জেনারেটর (মডেল ১৯৫০S এবং ১০৬৫৫): ধারা ৫.৪.২.৩.২.৫ এর অধীনে ইলেকট্রনিক্সের সার্ge প্রতিরোধের বৈধতা দেয়। প্লাগ ক্যাপাসিটর ডিসচার্জ টেস্টার (KP-1060): পাওয়ার উপাদানগুলিতে শক্তি বিপদ মূল্যায়ন করার জন্য গুরুত্বপূর্ণ।   এই সহযোগিতা কিংপো-এর ভূমিকা তুলে ধরে TÜV SÜD-এর এই অঞ্চলের স্থানীয় পরীক্ষার ক্ষমতা বাড়ানোর মিশনে। সরঞ্জামগুলি ASEAN বাজারের জন্য গ্রাহক ইলেকট্রনিক্স, শিল্প ডিভাইস এবং IoT পণ্যগুলির দ্রুত সার্টিফিকেশন সক্ষম করবে। নির্বাহী মন্তব্য   হংকং-এ একটি কেন্দ্র এবং এশিয়া জুড়ে কার্যক্রমের সাথে, কিংপো আন্তর্জাতিক কমপ্লায়েন্স মানগুলির জন্য কাস্টমাইজড পরীক্ষার সরঞ্জাম সরবরাহ করে। এর ক্লায়েন্টদের মধ্যে রয়েছে ফরচুন ৫০০ কোম্পানি এবং বিশ্বব্যাপী স্বীকৃত পরীক্ষাগার। বিক্রয় যোগাযোগ: লিনেট ওং | sales@kingpo.hk | +৮৬ ০৭৬৯ ৮১৬২৭৫২৬
আরো দেখুন

KingPo Technology Development Limited
বাজার বিতরণ
map map 30% 40% 22% 8%
map
map
map
গ্রাহকরা কী বলেন
এসজিএস
SGS যোগ্যতাসম্পন্ন সরবরাহকারীর প্রয়োজনীয়তা অনুযায়ী. কিংপোকে "এসজিএস কোয়ালিফাইড সরবরাহকারীদের স্টেটমেন্ট" হিসাবে দেওয়া হয়েছে
ফেরেশতা
শুভ দিন এবং আপনাকে ধন্যবাদ
আইএসকিউ প্রকিউরমেন্ট ম্যানেজমেন্ট
প্রিয় সরবরাহকারী কিংপো প্রযুক্তি উন্নয়ন,
TUV রাইনল্যান্ড জার্মানি
প্রথমত, আমি ভাল সহযোগিতার জন্য আপনাকে ধন্যবাদ জানাতে চাই!আমরা বিশেষ করে দ্রুত পরিষেবার প্রশংসা করি এবং আমাদের অনুরোধ এবং সমস্যার জন্য প্রায় সবসময় একটি সমাধান থাকে।এর জন্য আপনাকে অনেক ধন্যবাদ এবং সর্বোত্তম এবং 2022 এর জন্যও একটি ভাল সহযোগিতা চালিয়ে যান!
TÜV Rheinland Japan Ltd.
আমরা অবাক হয়েছি যে আপনি আমাদের বেশিরভাগ প্রশ্নের উত্তর দিতে পারেন। তুমি আমাদের কাছে অনেক বড় স্বপ্নের মতো! (এটি একটি অভিনন্দন, আমরা আশা করি আপনি ভুল বুঝবেন না)
যে কোন সময় আমাদের সাথে যোগাযোগ করুন!